MD-Based Refinement and Validation at Sub-5 Å Resolution

Feb 7th, 2018

Cryo-EM from Cells to Molecules: Multi-Scale Visualization of Biological Systems
Lake Tahoe, CA

Abhishek Singharoy
Biodesign Institute, Arizona State University

Beckman Institute for Advanced Science and Technology
University of Illinois Urbana Champaign
Two terms are added to the MD potential

$$U_{total} = U_{MD} + U_{EM} + U_{SS}$$

An external potential derived from the EM map is defined on a grid as

$$U_{EM}(\mathbf{R}) = \sum_j w_j V_{EM}(\mathbf{r}_j)$$

$$V_{EM}(\mathbf{r}) = \begin{cases}
\xi \left(1 - \frac{\Phi(\mathbf{r}) - \Phi_{thr}}{\Phi_{max} - \Phi_{thr}} \right) & \text{if } \Phi(\mathbf{r}) \geq \Phi_{thr}, \\
\xi & \text{if } \Phi(\mathbf{r}) < \Phi_{thr}.
\end{cases}$$

A mass-weighted force is then applied to each atom

$$\mathbf{f}^E_M = -\nabla U_{EM}(\mathbf{R}) = -w_i \partial V_{EM}(\mathbf{r}_i) / \partial \mathbf{r}_i$$

Molecular Dynamics Flexible Fitting at 3-5 Angstrom Resolution
Combination of “Enhanced-sampling” with Flexible Fitting

Multiple stereoisomers in the same 1.8 Angstrom data

J Am. Chem. Soc. 2015, 137, 8810-8818
Results of the Cryo-EM Structure Challenge (EM193)

emb_5778

emb_5995
Model-uncertainty: RMSF (ensemble measure)
RMSF and inherent flexibility

- (a) β-gal (2.2 Å), $R^2 = 0.97$, RMSF = 0.37
- (b) TRPV1 (3.4 Å), $R^2 = 0.96$, RMSF = 0.64
- (c) γ-sec (3.4 Å), $R^2 = 0.83$, RMSF = 0.54
RMSF and Quality of Map

![Graph showing RMSF and quality of map as a function of B-factor. The graph includes data points for RMSF and EMRinger data, with a curve fit for RMSF, and an experimental RMSF at a B-factor of -75.](Image)
What should we report?

- Local per-residue cross correlation
- Integrated FSC
- RMSF or similar uncertainty measures
- EM-ringer
- Molprobity statistics
- Source of initial model
New Force Fields and CaBLAM Analysis

β-galactosidase

<table>
<thead>
<tr>
<th>Force Field</th>
<th>Rama-favored</th>
<th>Outliers</th>
<th>Rot-favored</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARMM</td>
<td>89.90%</td>
<td>2.70%</td>
<td>89.2%</td>
<td>4.40%</td>
</tr>
<tr>
<td>CHARMM-36m</td>
<td>93.01%</td>
<td>1.45%</td>
<td>90.3%</td>
<td>2.69%</td>
</tr>
<tr>
<td>36m + CaBLAM</td>
<td>94.04%</td>
<td>1.08%</td>
<td>92.3%</td>
<td>2.12%</td>
</tr>
</tbody>
</table>
Looking Forward: **Pushing the Resolution limit of de novo Modeling**

NIH Center for Macromolecular Modeling & Bioinformatics (grant # 9P41GM104601)

PROGRAMMERS

- Schulten
- Tajkhori

RESEARCHERS

- McGreevy
- Stone
- Isralevitz
- McMorrow
- Sun
- Wang
- Sekhar
- Thifault

DEVELOPMENT COLLABORATORS

- Dill (Stony-Brooks U.)
- Richardson (Duke)
- Rudack (RU Bochum)

eposters

- aMDFF, MELD-MDFF, SegMDFF, *Model Maker*

In-house MDFF applications:
- *Cell*, 170, 1234 (2017)
- *PNAS*, 113, 7816 (2016)