Bimolecular Structure Determination with NAMD: Computational Cryo-EM on Titan

May 16th, 2018

Abhishek Singharoy
School of Molecular Sciences
Arizona State University

OLCF Users Meeting
Oak Ridge National Laboratory

INCITE PI to “All-atom Simulations of Photosynthetic and Respiratory Energy Conversion”
Biomolecules in Action: Using Titan as a “Computational Microscope” with NAMD

Chemistry

\[
U(\vec{R}) = \sum_{\text{bonds}} k_{\text{bond}} (r_{ij} - r_{0})^2 + \sum_{\text{angles}} k_{\text{angle}} (\theta_{ij} - \theta_{0})^2 + \sum_{\text{dihedrals}} k_{\text{dihedral}} [1 + \cos(n_{ij} \phi_{ij} + \delta_{ij})] + \sum_{\text{strands}} k_{\text{strands}} [\frac{(\alpha_{ij} - \beta_{ij})^2}{\gamma_{ij}}] + \sum_{\text{crosses}} \frac{q_{ij} q_{kl}}{r_{ij}}
\]

Physics

\[
m_i \frac{d^2 \vec{r}_i}{dt^2} = \vec{F}_i = -\vec{\nabla} U(\vec{R})
\]

Math

\[
\vec{r}_i(t + \Delta t) = 2\vec{r}_i(t) - \vec{r}_i(t - \Delta t) + \frac{\Delta t^2}{m_i} \vec{F}_i(t)
\]

(repeat *one billion times* = microsecond)

NAMD Software

- Virus
- Protein Folding

Supercomputers

- 128
- 256
- 512
- 1024
- 2048
- 4096
- 8192
- 16384
- 32768

- Jim Phillips
- David Hardy

Molecular Dynamics (MD) simulations
Why Does One Need a Supercomputer?

Structural transitions

Ensemble of trajectories

Multiple replica required!!

Why Does One Need a Supercomputer?
Parallel Performance of NAMD on Summit

![Graph showing performance of NAMD on Summit](image)
Visualization and Analysis: VMD
In-situ Visualization of Billion Atoms : SIGHT

Noah Trebesch

Ben Hernandez (OLCF)
Scientific Accomplishment # 1: Energy Conversion in Bacterial Photosynthesis

Low-light adaptation

![Diagram of bacterial photosynthesis components](image)

Equation: k_{ATP}(I) = \frac{1}{2} I q \left(1 + \frac{1}{2} I q \tau_{RC}(I) \frac{1}{n_{RC}} \right) \)

Equation: \tau_{RC}(I) = 1 + (\tau_H - 1) \left(1 - e^{\frac{I q}{2B}} \right) \)

Equation: \tau_H = \frac{n_{RC}}{n_B} \tau_B; B = \frac{2n_B}{\tau_B} \)

eLife 2016, 5, e09541;
Parallel Comput. 2016, 55, 17

Processes involved in energy conversion in the photosynthetic chromatophore.

Figure 4. Processes involved in energy conversion in the photosynthetic chromatophore. (ATP synthase, cyt bc, cyt b, complex, quinone/quinol complexes, ATP synthase)
Summit Goals 1: From First-Principles to Phenotypic Behaviors

Can we make a model for growth from first principles??

Figure 3. Effect of vesicle composition on steady-state ATP production at different light intensities. Vesicle composition is given in terms of the number of cytbc dimers (nB) and of RC-LH1-PufX dimers (nL) for vesicles featuring identical surface area; LH2 composition of the vesicle is determined by k_ATP (ATP/s).

Sener et al. eLife 2016;5:e09541. DOI: 10.7554/eLife.09541
Summit Goals 2: Conformational Transition in Molecular Motors

Scientific Accomplishment #2

Design principles of 100% energy conversion efficiency ??

J. Am. Chem. Soc. 2017, 139, 293
Scientific Accomplishment # 3: Synthesis of Artificial Motors

Inchworm motion

Tetrazine
BPTz

Monomer Pathway

Dimer Pathway

RDS

Bis-macrocycle

cyanosolo

cyanodimer

(Accepted for special issue commemorating the 2016 Nobel Prize in Chemistry)

Amar Flood
(Indiana U.)
Scientific Accomplishment # 4: Data-guided Structure Discovery

Nat. Struct. Mol. Biol. 21, 244 (2014)

eLife 3, e03035 (2014)
PNAS 113, 10310 (2016)
eLife 5, e16105 (2016)
Methods 100, 50-60 (2016)
Structure 24, 2102 (2017)
An external potential derived from the EM map is defined on a grid as

$$U_{EM} = \sum_j w_j V_{EM}(r_j)$$

Two terms are added to the MD potential

$$U_{total} = U_{MD} + U_{EM} + U_{SS}$$

A mass-weighted force is then applied to each atom

$$f_i^{EM} = -\nabla U_{EM}(R) = -w_i \partial V_{EM}(r_i) / \partial r_i$$

Data-acquisition Pipelines at NSF BioXFEL Center

Serial (femto-second) X-ray Crystallography

Raw Data → 10-100TB

- Hit finding → 1-10 TB
- Find Indexable patterns → < 1 TB

- Index
- merge

→ model → ~MB

Quality assessment & refinement

- Deposit Data (CXIDB)
- Deposit Structure (PDB)

Publish

Fromme (ASU)
Scientific Challenge # 4: Structure Discovery with Supercomputers
Combination of “Enhanced-sampling” with Flexible Fitting

Multiple stereoisomers in the same 1.8 Angstrom data
Results of the Cryo-EM Structure Challenge (EM193)

Journal of Structural Biology (Under review at for special section commemorating 2017 Nobel Prize)
Quality of fitting

CCF

LAP

ENV

Sequence Match

TRPV1

β-galactosidase
Vision: Structure Discovery with Summit

Currently on BlueWaters